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Asymptotics of violent surface motion

B y S. J. Chapman, K. A. Gillow, S. D. Howison and J. R. Ockendon

OCIAM, The Mathematical Institute, 24–29 St Giles, Oxford OX1 3LB, UK

The very fact that the motion of a free boundary is violent can be of considerable
value in analysing the mathematical models of its evolution. For example the small-
ness of the angle between the undisturbed free surface of a liquid and an impacting
smooth solid almost allows the problem to be formulated as a classical ‘mixed bound-
ary value’ problem. This paper gives an informal review of several such configurations
and indicates where the violence of the motion enables asymptotic analysis to give
new insight, both qualitatively and quantitatively. However, many of these situations
are in practice irreversible and we will explain why this can cause severe difficulties
with the mathematics.

1. Introduction

Both the theoretical and the numerical analysis of many violent surface motions,
for example those generated by impacts, are difficult. On the theoretical side, the
presence of a free surface with its concomitant nonlinearity usually makes the study
of existence and uniqueness hard, and renders it impossible to find explicit solutions
in all bar a few cases. Numerical analysis is in addition severely hampered by the
rapid motion of the free surface and by the presence of small regions within which
large changes occur. However, both these latter circumstances favour an asymptotic
approach, and in this paper we describe how this may, in certain circumstances, be
carried out. Our intention is to give a brief review of some mathematical aspects
of these problems, and to make some conjectures concerning open questions raised
thereby.

We shall mainly discuss water-entry and water-exit of blunt bodies, as a canonical
example of the type of problem where asymptotic analysis is effective, and where it
can be confirmed by more rigorous analysis (Fraenkel, this volume). We note, though,
that there is a great variety of problems to which the methodology is applicable, and
refer to the reviews by Howison (1991), Howison et al. (1997) and Ockendon (1991)
for further examples and more details.

The basis for asymptotic approximation is that in a violent impact such as water-
entry of a smooth body, the lateral extent of the ‘contact set’ between the impacting
body and the water is much greater than the depth of penetration, a fact which
follows from simple geometric considerations (see figure 1). One can then linearize
the boundary conditions on both the free surface and the impacting body onto the
undisturbed water level, giving a mixed boundary value problem in a domain which
is known except for the points demarcating the contact set. A careful consideration
of the conditions that apply at these points may then allow the determination not

Phil. Trans. R. Soc. Lond. A (1997) 355, 679–685 c© 1997 The Royal Society
Printed in Great Britain 679 TEX Paper

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


680 S. J. Chapman and others

outer region

inner region of

jetextent O(ε)

(a)

(b)

V
Y

X

Y = f(εX)− V t : Φn = vn

∇2Φ = 0

h = f − t φy = −1 φ = 0, φy = ht

d(t)∇2φ = 0

|∇φ| ∼ O(1/r2) as r →∞
φ = h = 0 at t = 0

−d(t)

−d(t)/ε

|∇Φ| ∼ O(1/R2) as R→∞

d(t)/ε{
Φn = vn
Φt + 1

2 |∇Φ|2 = 0

Figure 1. The water-entry problem and its linearized version.

only of the relevant physical quantities (here, the velocity and pressure) but also of
the extent of the contact set.

2. Water-entry

The simplest possible model of the water-entry of a blunt symmetric two-
dimensional body Y = f(εX) is shown in figure 1a. The fluid motion is modelled by
incompressible irrotational flow, with velocity potential Φ(X,Y, t); the kinematic and
dynamic conditions on the free surface, and the kinematic condition on the body are
as shown. Thus we have neglected, among others, effects of gravity, viscosity, three-
dimensionality, compressibility, surface tension and flow in the air above the water;
some of these effects are considered elsewhere in this volume (Cointe, this volume;
Greenhow, this volume; Korobkin, this volume).

A detailed examination (Howison et al. 1997) of the asymptotic structure (con-
firmed rigorously in Fraenkel (this volume) when the impacting body is a wedge) of
the solution as ε → 0 shows that the three types of region shown in figure 1a play
an important role. First is an ‘outer’ region in which the fluid response is as if the
body were an expanding flat plate between the points X = ±d(t)/ε moving with
velocity (0,−V ): this is the scenario first proposed in Wagner (1932). Then in the
two ‘turn-around’ regions of size O(ε) adjacent to the body near X = ±d(t)/ε, we
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have a travelling-wave free surface flow of Helmholtz type; and finally the water is
ejected as two thin jets emanating from the turn-around regions.

It is now possible, by neglecting the jets (which can be justified a posteriori) to
linearize the conditions on the free surface onto the X-axis. Then after rescaling
(X,Y ) = (x, y)/ε, Φ = φ/ε, the free surface displacement is y = εh(x, t) and the
body is at y = ε(f(x) − t). After linearization and expansion in powers of ε the
resulting mixed boundary value problem for the leading-order velocity potential,
which without risk of confusion we denote by φ(x, y, t) (with a similar convention
for h(x, t) and d(t)) is as shown in figure 1b. For any d(t) we can write down φ by
inspection:

φ = −y − Re{
√
d(t)2 − (x+ iy)2}.

In order to determine d(t), we use the fact that the free surface only ‘turns over’ when
it is very close to the body (in the scaled coordinates the extent of this turnover region
is O(ε2)). Thus we impose the condition

h(d(t), t) = f(d(t))− t,
and, integrating the linearized kinematic boundary condition φy = ht, we obtain the
integral equation

f(d(t)) =
∫ t

0

d(t)
(d(t)2 − d(τ)2)1/2 dτ,

the solution of which is (Cointe & Armand 1987; Howison et al. 1991; Tollmien 1934;
Wagner 1932)

d−1(x) =
2
π

∫ x

0

f(ζ)
(x2 − ζ2)1/2 dζ.

As stated above, these formal results are confirmed when f(x) = |x|, in which case
d(t) = πt/2 (Fraenkel, this volume).

The simplest model outlined previously has some interesting generalizations and
consequences. For example, it is easy to allow the initial water surface to be non-
planar; thus for example the model can be used to predict jet formation when a
smoothly breaking wave violently impacts a vertical breakwater (Cooker & Peregrine
(1995) present numerical calculations of this situation). We also note that the analysis
may be complicated by the possibility of a ‘critical’ jet (see Longuet-Higgins, this
volume). The formulation in three dimensions follows similar lines, although explicit
solutions are only available in special cases (see Howison et al. (1991) for a catalogue).
Oblique impact (in which the impacting body has a transverse velocity as well as
a normal velocity) leads to the same model and, if the body is symmetric, gives a
splash that is symmetric to leading order unless the transverse velocity is at least of
O(V/ε) (Morgan 1994).

Of more mathematical interest is the fact that an integration in time leads to a
reformulation as a variational inequality for the ‘displacement potential’ (Korobkin
1982). This in turn allows existence and uniqueness to be established for the ‘lin-
earized’ problem in figure 1b, and is an effective formulation for numerical computa-
tion (Howison et al. (1991) reports comparison with experiment).

3. ‘Codimension-two’ free boundary problem

The linearization procedure described previously has been applied in a wide variety
of physical situations, some of which are listed later and others of which are reviewed
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in Howison (1991), Howison et al. (1997) and Morgan (1994). In all cases the general
procedure is the same.

(1) Assume that the free surface in the ‘full’ problem lies close to a known surface.
(2) Linearize the free surface boundary conditions onto this known surface. (This

procedure may also be carried out for conditions applied on a prescribed surface;
in the water-entry problem the conditions on the body fall into this category.)
Then the only geometrical unknown is the curve bounding the projection of the
free surface onto the known surface; because this has codimension two, we term it
the ‘codimension-two free boundary’.

(3) Solve the resulting mixed boundary value problem and determine the
codimension-two free boundary by applying appropriate conditions there. These may
come from a matched asymptotic expansion argument in which the linearized free
boundary is matched to a local solution of the full problem (as in water-entry); they
may alternatively come from minimum singularity arguments.
Examples of the procedure include:

(i) contact problems and crack problems in linear elasticity (here the linearization
is implicit in the formulation via linear elasticity);

(ii) flow over a shallow step (O’Malley et al. 1991);
(iii) patch cavitation on a bluff headform (Ceccio & Brennen 1991; Howison et al.

1997);
(iv) evolution of long thin bubbles in Hele-Shaw flow (Hohlov et al. 1994; Lacey

et al. 1990) and Stokes flow; and
(v) the initial stages of the sintering of two cylinders of viscous liquid under the

action of surface tension (Hopper 1992; Howison et al. 1997; Morgan 1994).
In the last two cases, exact solutions to the full problem are available to confirm the
validity of the approximation.

4. Water-exit problems

As indicated elsewhere in this volume, water-exit problems are considerably more
problematical than entry problems. Indeed, from the physical and mathematical
points of view, it is neither clear how to pose the problem of rapid water-exit in sen-
sible terms, nor whether existence or, even less likely, uniqueness, are to be expected.
As examples of the mathematical difficulties we note the following.

(1) The full problem (as stated in figure 1a) is formally time-reversible. Thus one
can generate solutions for the exit of a partially submerged body by first considering
the entry of the same body into undisturbed water (or indeed disturbed water, i.e.
water that is in motion or does not initially have a planar free surface), then reversing
time. However, it is not clear how large is the set of initial conditions for which this
procedure generates physically acceptable solutions.

(2) Another conceivable solution to the exit of a partially submerged body from
(say) initially static water is that the body is simply removed, leaving the water
motionless (in the absence of surface tension). Of course this solution demands that
contact between the body and the water is immediately lost on all the wetted portion
of the body, which may be physically unrealistic.

Turning to the linearized problem, the solution procedure outlined here fails, sim-
ply because whereas in entry problems, for each x the time d−1(x) is a natural
terminus ad quem for integration of the equation φy = ht, this relies on the fact
that d(t) is increasing. For exit problems, the converse is true, and it is possible to
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construct infinitely many solutions to the exit problem (figure 1a with φy = +1 for
−d(t) < x < d(t), y = 0). Note, though, that almost all of these leave the water
surface with a ‘kink’ at x = d(0), and may indeed blow up in finite time (a simi-
lar situation arises for Hele-Shaw suction problems compared to injection problems
(Lacey 1990)).

A final pointer to the ill-posedness of the exit problem is a local linear stability
analysis of the codimension-two free boundary problem. This analysis is somewhat
unconventional: we have to determine the stability of the line x = d(t), y = 0,
−∞ < z < ∞ (where z is the third Cartesian coordinate) to perturbations in the
z-direction but constrained to lie in the x–y plane, so that the perturbed codimension-
two free boundary is x = d(t) + δ sin(nz)d1(t), y = 0, −∞ < z < ∞, where δ � 1,
n > 0 and d1(t) is to be determined. The problem is otherwise as stated in figure 1b,
except that in the matching condition h(d(t), t) = f(d(t)) − t, d(t) is replaced by
d(t) + δ sin(nz)d1(t). It is necessary to construct an inner region near the perturbed
codimension-two free boundary, of size O(δ); the potential is calculated to two orders
in δ in both this region and the outer region, and after considerable manipulation
(space does not permit a full treatment here), it is found that the growth rate d1(t)
satisfies

d1(t) = const.
ḋ(t)e−nd(t)

A(t)
,

where A(t) is a globally determined function. This clearly demonstrates stability for
entry (V > 0, d(t) increasing) and instability for the time-reversal (exit) problem
(V < 0, d(t) decreasing).

It is interesting to compare this analysis with the linear stability analyses of (a)
conventional ‘codimension-one’ free boundary problems, for example surface gravity
waves or the Kelvin-Helmholtz analysis of a vortex sheet and (b) the motion of a
free singular curve such as a line vortex in inviscid hydrodynamics (which is also a
codimension-two free boundary problem, but without the constraint that the free
curve must lie on a prescribed surface). In the former case there is no singular
behaviour near the free boundary, and the analysis is straightforward without the
need for matched asymptotic expansions. In the latter, the behaviour is singular and
matched asymptotic expansions are necessary; the upshot is that both the singular
behaviour and the ‘law of motion’ are, to leading order, locally determined. Thus for
a vortex, the local behaviour in the fluid velocity is u ∼ const.eθ/r with respect to
cylindrical polars aligned with the tangent to the vortex, and the evolution is given
by v = const. bκ where κ is the curvature, b the binormal and v the normal velocity
of the vortex. In our case, the singular behaviour is still locally determined (and is
thought of as matching with the local form of the full, codimension-one, problem),
but the ‘law of motion’, namely

h(d(t) + δ sin(nz)d1(t), t) = f(d(t) + δ sin(nz)d1(t))− t,
is globally determined because h(x, t) is found by a global integration in t.

Finally we remark in connection with exit problems that an ingenious solution
has been developed by the Basilisk Lizard, Basiliscus basiliscus (Glasheen & McMa-
hon 1996). These reptiles can run on water, and support their weight by exploiting
the large pressures generated when their feet hit the water surface approximately
normally. Their feet subsequently penetrate some distance into the water, creating
a cavity (and are hence well into the full nonlinear regime), and are then rotated
so that they can be withdrawn more or less vertically through the cavity before it
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collapses. Large negative pressures, which would act to suck the lizard down, are
thereby avoided.

5. Discussion

To conclude, we mention some unresolved issues, to do with both water-entry
and water-exit problems. Taking the latter first, the need for some regularization
is apparent. On physical grounds, one might propose the incorporation of other
effects into the model; for example, on small length scales surface tension may be
a significant smoothing mechanism, while in other circumstances a coupled model
involving air moving underneath the exiting body may be more appropriate. A second
possibility is regularization via a weak solution of the kind described in Rogers (this
volume), allowing a partially saturated region to form underneath the body; this
idea is appealing both in the light of observed instabilities under exiting cylinders
(Greenhow, this volume) and in view of the instability described in §4. Indeed, one
might think of a partially saturated region either as being due to cavitation or as
a model for the effect of a large number of thin fingers of air that have developed
from an initially small perturbation; this idea has much in common with models of
‘mushy regions’ in Stefan problems with volumetric heating (Lacey & Tayler 1983).

Finally we mention a purely mathematical possibility: that the solution to the exit
problem should be the time-reversal of an entry problem, subject to the condition
that the free surface (in the full problem), or h(x, t) in the linearized problem, should
be uniformly smooth. However, there is so far no evidence to support this hypothesis.

Turning to entry problems, we note some possible difficulties with liquid–liquid
impacts. As noted in Howison et al. (1991), the codimension-two approximation can
in principle also be used here. However, consideration of the evolution of the flow
immediately after first contact suggests that there are several different possible sce-
narios, each requiring a different modelling approach, and likely to occur in different
parameter regimes. Among these are the following.

(1) The two fluid masses immediately cohere and the distinction between them is
lost; this is the approach of Blake (this volume) and Prosperetti (this volume). The
velocity is then smooth in the interior of the flow domain.

(2) A vortex sheet separating the two liquids may in certain circumstances be
appropriate. This possibility is explored in more detail in Cresswell & Morton (1995)
and Zhang et al. (1993).

(3) For large-scale flows, air may be entrained: note, though, that contact does
eventually occur, albeit at a lower relative velocity.

(4) Because the curvature of the surface at contact is instantaneously infinite, sur-
face tension effects must be significant albeit only locally. If, however, the impacting
velocity is small or zero, as would occur in the inviscid version of the sintering prob-
lem mentioned previously or in low-velocity drop impact, the effects of surface tension
may be more significant. Hitherto attempts to formulate the short-time behaviour
of ‘inviscid sintering’ have not succeeded; however, we note that Prosperetti & Og̃uz
(1989) raise the intriguing possibility that capillary wave propagation along the free
surface very quickly leads to another kind of ‘mushy region’ involving multiple con-
tact with trapped air bubbles. The detailed modelling of this phenomenon, and the
assessment of its effect on the later development of the flow, remains an interesting
open problem.
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